Conversion Style manual

The mkgmap team

Conversion Style manual
The mkgmap team

Publication date 08 January 2025

Table of Contents

IR g 1 [F o o o RSP USRPRSR 1
A D L= T o oo T gL 0= o USRI 2
P2 T I o Tl €= 1 g T = TSRS 2
P20 I I (=0 11 (o o USRI 2
N I < PSRRI 2
2.0.3. OVEIVIEBW LEVEL ...ttt sttt b e s nae s reenseenean 3

3. The SITUCIUIE Of @ SEYIE ...ttt et e s ae et e e e sneenee s 4
00 I 1 1 RSP 4
.11, TOP [EVEL FOIARN ...t 4

G N 4TSI V7 £ Lo o T 1 SRS 4
GG T I o T oo I = TSR 4
G N I g Tl 0 o 0] S 11 SR 5
3.4.1. Non command 11N OPLIONScceiuiiiriieieeieeteee et sre e e b e e sreesseeneens 5

T I TN oo 1K=] = SR 5
3.6, TNE HINES TIl@ ettt st e e e ae e be et e sneenaeenneas 6
G A I g T oo Yo o] 3N 11 RSP SRR 6
GRS T I Tl = K= Ko Lo = S 6
A, SEYIE TUIES ..ttt sttt e st e s bt et e e st e sae et e e aeeebeenbeemeesaeeneeeneesaeenteeneesseeneens 7
7 I g 0o [F o 1 o o U 7
4.1.1. Tag AN TEXE VEIUESoeeeeeee ettt sttt et st e e e ne e 8

R I R (= £ TP PP TSP 8
4.2.1. AIOWED OPEIELIONSeoveeieeiiieieeee st ie et e e et este e e seeteeseesaeentesneesseeseeneesseenseeneenns 8
4.2.2. COMDINING tAJ TESESeeeeeiiiriieie ettt et s sae e s e be et e sseense et e sneeneas 9
4.2.3. Comparing the values Of tWO tagSccooeriiieeereseee e 10
N o1 o S 10

VG T o o T o] oo -GS 11
G T3 "o (o R 12

R I SRR 12
TG TR o (= [(=PRSS 12
A.3.4. dElEEAITAGS ...oeeeeeeeeeee e et nae e e e 12
G TS T="0 (0| = o= PR 12
Z.3.6. NMAIMIE ...ttt ettt et e ettt et e e she e e bt e eae e e e e e eae e e Re e eRe e e Ee e eRe e e ReeeReeeE e e eReeebeeaneeeneenaeeenes 13
G T =0 [0 = o o=\ SRR 13
R T < 200 == TR OR PR 13
G T T oo PRSPPI 14
G T L =0 oV o] SRR 14
G I = o oV 11 £ USRS 14

G T <o oo PR RT 15
G TN G <o 00 =6 1SRRI 15

Y o] =SSOSR 15
V= o] L= 11 0 €SS 15
S V0 1 0o oo o =SSR 18

4.5, MKGMEP INTEINAl TAYS ..uveieeeieieieeeee ettt st esreesaesseesbeeaeeneesreenseeneeas 19
4.5.1. Tags evaluated DY MKOMEPooiiiiiieiieie e 19
4.5.2. Tags added DY mKOMEPcceooiiieeee e 22

4.6. Element type defiNItIONc.ooeiiiiiiieie ettt esreenneeneen 25
I R =Y. TR 25

Conversion Style manual

A (== o [V11 o o PSSRSO 26
TG Mo L= = 1 = SR 26
I 070 [o = S 26
GRS T (070 L 0= <o S SRR 27
T ST o] 11 U= SRR 27
4.6.7. CONtINUE WIth_@CLIONSeoiuiiieicie ettt e e nre s 28

O 1 T W o [o T = 28
4.8, FINAIZE SECHION ...coueiiiieie ittt sttt b bbbt e et e e e b e nbesbeebesreeseeneeneas 28
4.9. Style syntax extension if then E1Se ... 29
g (O I I (010 o] == oo o OSSN 30
I S0 T 4 T= T = 0 o - 30
4.11.1. SIMPIE EXAMPIES ...ttt e e neenn 30
4.11.2. More involVed EXaAMPIEScccceiieiiieeceese et sreesne e 31

O = (] o = TR0 = 33
oI I IS o = TR = S 33
5.1.1. Tests performed by Check-Styl€S ..o 33

5.2. MaKing @ StYI€ PACKAOEeeveieeeiecie ettt et et esre e reennenneene s 33
A A | = o 0 Y OSSPSR 33
5.2.2. SIMPIE fIl€ @CHIVE ... 34
5.2.3. THE GarMIN M@ ..c.eooieeiecie ettt te e sre e ae e e e s reeseeneesneenaennenrens 34
5.2.4. RESOIULION ..ottt st st b bttt et e bbb e bt 35
IR T = Y SRS 35

LT N o011 | ST PRRSN 37
L0 I I o= oo OSSP 37
6.2. Authors and ackNOWIEAGMENESccueiieiicececc et nae e 37

List of Tables

v I ¥ | I T o) T o1 = (] 0] TR 8
S VL= U g ox o SR 10
4.3. List Of @l SUDSHTULION FHITENSeiieieiece e e ae s 16
4.4, Highway SYMDOI COUESoiiiiieieiie sttt ettt et e b et e e reesre et e eneesseenseeneenns 18
4.5, Tags fOr rOUtADIE MBScoiiiieieiee ettt s e s te et e sne e se et e eneesreenes 19
4.6. Tags that control the treatment Of FOAASooieiiiieee e e e 21
R e O "0 (0 (=SS = o RS 21
4.8. Tags added DY MKGMED ..o ettt 22
4.9, OtNEN INTEIMEI TAYSeeiveeiieiestieie et e e ee et e st e be e eesseesseesesae e aeeneesaeesseenseeneanaeenteeneesen 24
O (O 0= o [0 = == SR 27
I 0 7= o S 0= 0 SR 27
5.1, RESOIULIONS ...ttt sttt sttt st e bt et e e st e s bt e te e st e s se e teemeesbe e b e emeesmeeaeemeesaeeteeneeaneenseennas 35

List of Examples

3.1, AN eXaMPLE INFO TIIE ettt a et et esreenne e 4
3.2. AN eXampPle OPLIONS FIlE ...ttt st b et enbe et e nnee e 5
4.1. Finalize section in the lines file with access handlingccocoovveiieeiine e 28
T g 10 1 0= = ST 31
TG T 10 ' [= o LS =SSR 31
O O == =S 00 1 SRS PR 31
4.5. Opening hours iN POSICOOE FIBIAooouiiiiieeeee et 32
4.6. Mountain Passes depending on the way they DElONG tOcccoooviieiieiiie e 32
5.1. Style PaCKkage [GYOULcceiiiiieeeeeee ettt e s et e e e aeesbeeneesreenreenee e 34

Vi

Chapter 1. Introduction

This manual explains how to write a mkgmap style to convert between OSM tags and features on a
Garmin GPS device.

A styleis used to choose which OSM map features appear in the Garmin map and which Garmin
symbols are used.

There are afew styles built into mkgmap, but as there are many different purposes a map may be used
for, the default stylesin mkgmap will not be ideal for everyone, so you can create and use styles external
to mkgmap.

The term style could mean the actual way that the features appear on a GPS device, the colour, thickness
of the line and so on. This manual does not cover such issues, and if that is what you are looking for,
then you need the documentation for TYP files.

Few people will want to write their own style from scratch, most people will use the built in conversion
style, or at most make afew changes to the default style to add or remove a small number of features.
For general information about running and using mkgmap see the Tutorial document.

To be clear thisis only needed for converting OSM tags, if you are starting with a Polish format file,
there is no style involved as the garmin types are already fully specified in theinput file.

For general information about the OpenStreetMap project see the OpenStreetMap wiki [http://
wiki.openstreetmap.org].

http://wiki.openstreetmap.org
http://wiki.openstreetmap.org
http://wiki.openstreetmap.org

Chapter 2. Designing the map
Y ou can completely change which features are displayed and at what zoom levels.

First you need to understand a little about the way that the zoom works in Garmin maps. There are two
concepts resolution and level.

2.1. The Garmin Map

Each Garmin map may contain several separate maps which are prepared at different levels of detail, the
most appropriate of these is displayed depending on the zoom selected by the user.

When creating the map, the map maker will choose which of these level mapsis displayed according to
the resolution (or zoom) selected. For example, a map might contain three levels (0, 1 & 2); On the level
2 map (showing the largest area) atown might just be represented by a named dot; as the user zoomsin,
the display might switch to the level 1 map showing an outline of the town. Zooming in further might
switch to the level 0 map, with the individual streets of the town shown.

In addition the GPS itself might decide when to show or hide individual featuresin each of the level
maps, especialy with POIs. Thisis also affected by the detail setting in the map config menu.

2.1.1. Resolution

Thefirst isresolution thisis a number between 1 and 24 with 24 being the most detailed resolution and
each number lessis half as detailed. So for exampleif aroad was 12 units long at resolution 24 it would
be only 6 at resolution 23 and just 3 at resolution 22.

On aLegend Cx the resolution corresponds the these scales on the device:

Resolution Scale on device
16 30km-12km

18 8km-3km

20 2km-800m

22 500m-200m

23 300m-80m

24 120m-50m

It may be dlightly different on different devices. Thereis an option to increase or decrease the detail and
if you change that from Normal then it will change the values above too.

2.1.2. Level

The next islevel. Thisisanumber between 0 and 16 (although perhaps numbers above 10 are not
usable), with O corresponding to the most detailed view. The map consists of a number of levels starting
(usualy) with 0. For example 0, 1, 2, 3 and a different amount of detail is added at each level.

The map also contains atable to link the level to the resolution. So you can say that level O corresponds
to resolution 24.

This mapping is specified in the file options within the style directory in use. Y ou can aso specify it on
the command line, for example:

--level s=0: 24, 1: 22, 2: 20

Designing the map

This means that the map will have three levels. Level 0 in the map will correspond to resolution 24 (the
most detailed), level 1 will show at resolution 22 (between scales of 500m and 200m) and so on. The
lowest level needs to include at least an object, therefore the default lowest level of 16 will create a
broken map, if your osm input file has no information at zoom level 16 or lower included. Up to 8 levels
are alowed.

2.1.3. Overview Level

The next is overview-level. The meaning isthe same asin level, but it is used for the creation of the
overview map. The overview map is used in PC programs like Basecamp or Mapsource, it improves the
drawing speed when looking at the whole map.

The GARMIN map contains only one overview map, so it should not contain too many details, else it
will reach size limits.

This mapping is specified in the file options within the style directory in use. Y ou can aso specify it on
the command line, for example:

--overvi ew | evel s=3: 18, 4: 16, 5: 12

It is recommended to continue the numbers of the levels. Again, up to 8 levels are allowed.

Chapter 3. The structure of a style

A style consists of anumber of filesin asingle directory. The best way isto start out with an existing
style that is close to what you want and then work from there.

A style can be packed into asingle file using the standard zip utilities that are available on every
operating system, or it can be written as one large text file using the single file style format. These
alternatives are explained in making a style package.

3.1. Files

These filesareread in the order that they are listed here. In general, files that are read first take priority
over filesread later. The only one of thesefilesthat is actually required isthe ver si on file, asthat is
used to recognise the style. At least one of the poi nt s, | i nes or pol ygons filesmust be present or else
the resulting maps will be empty.

3.1.1. Top level folder

Choose a short name for your style, it should be one word or a couple of words joined by an underscore
or hyphen. Thisis how people will refer to the style when it is finished. Create a directory or folder with
that name. Then you must create one or more files in this directory as detailed below. Only thever si on
fileisrequired.

3.2. The version file

Thisfile must exist asit is used to recognise avalid style. It contains the version number of the style
language itself, (not the version number of your style, which you can specify inthei nf o fileif you so
wish). The current version number of the style languageis 1. Make sure that there is anew line after the
number, place an empty line afterwards to be sure.

3.3. The info file

Thisfile contains information about your style. It isall optional information, and there is only really any
point adding this information if you are going to distribute your style, or you have more than one style
that you maintain.

Thefile consists of key=value pairsin the same syntax as the command line option file. To summarise
you can use either an equal sign = or acolon : to separate the key from the value. Y ou can aso surround
the value with curly braces{ } and this allows you to write the value over several lines.

version The version number of your style.

summary A short description of your stylein oneline.

description A longer description of your style.

base-style Do not use anymore. This was used to base a style on another one. However, it is

bug prone and behavesin away that is not intuitive without a good understanding of
how things work. The preferred way to do thisisto use the include mechanism. This
command will be removed atogether at some point in the future.

Example 3.1. An exampleinfofile

Hereis an example based on thei nf o file from the default style. Y ou can see it uses both equal and
colon as separators, normally you would just pick one and use it consistently, but it doesn’t make any

The structure of astyle

difference which one you use. The description iswritten over several lines surrounded in curly braces.
Lines beginning with a hash symbol # are comments and are ignored.

#
This file contains informtion about the style.
#

sunmary: The default style
version=1.0

description {

The default style. This is a heavyweight style that is

desi gned for use when napping and especially in lightly covered
ar eas.

}

3.4. The options file

Thisfile contains a number of options that should be set for this style asif they were set on the command
line. Only command line options that affect the style will have any effect. The current list is| evel s,
overvi ew | evel s, and ext r a- used-t ags.

It is advisable to set up the levels that you want, as the default is not suitable for all kinds of maps and
may change in the future. Ideally, you should set the same levels as are used in your stylefiles. For
example, if your style files use levels 12,16,20,22,23,24 then it' s a good idea to make sure your options
style file declares these levels explicitly.

Example 3.2. An example optionsfile

|l evels = 0:24, 1:22, 2:20, 3:18
overviewlevels = 4:17, 5:16, 6:15, 7:14, 8:12
extra-used-tags=

3.4.1. Non command line options

Most of the options are the same as the command line option of the same name and so you should see its
description in the option help. There are however some options that can only be set in thisfile (just the
currently).

extra-used-tags
A list of tags used by the style. Y ou do not normally need to set this, as mkgmap can work out which
tags are used by a style automatically in most cases. It exists only to work around cases where this
doesn’t work properly.

3.5. The points file

Thisfiles contains a set of rulesfor converting OSM nodes to Garmin POIs (restaurants, bars, ATMs
etc). It can also contain rules for some kind of OSM nodes that may affect routing behavior, for example
barriers, traffic_calming, traffic_signals, etc.

If thisfileis not present or empty then there will be no POI’sin the final map.

The syntax of the file is described in the style rules section. Like all other files, a hash symbol #
introduces a comment.

The structure of astyle

3.6. The lines file

Thisfile contains a set of rules for converting OSM ways to Garmin lines (roads, rivers, barriers, etc).
The syntax of the file is described in the style rules section.

3.7. The polygons file

Thisfile contains a set of rules for converting polygons to Garmin areas (fields, buildings, residential
areas, etc). The syntax of thefileis described in the style rules section.

3.8. The relations file

Thisfile contains a set of rulesto convert OSM relations. Unlike the poi nt s, | i nes and pol ygons files
this file does not lead directly to a Garmin object. Instead it is used to modify the ways or nodes that are
contained in the relation.

So for example, if the relation represents a route, then you might add one or more tagsto all the ways
that make up the route so that they can be processed in thel i nes file specialy.

The syntax of the file is also described in the style rules section, but the rules can only have an action
part, they must not have a type description part.

Chapter 4. Style rules

Rules allow you to take a map feature in the OSM format, which uses a set of tags to describe the feature
into the format required by Garmin maps, where features are identified by a number.

The rules for converting points, lines and polygons are held in correspondingly named files, as described
in the structure of a style.

Each file contains a number of rules. Rules test the values of the tags of an OSM node, way or relation.
They also select a specific Garmin type based on the result of those tests and set mkgmap internal tags
(mkgmap: *) to assign specific attributes to a map element.

4.1. Introduction

Each rule starts off with an expression to test the value of one or more tags.

A rule is made up of two or three parts. The three possible parts are:

o Thefirst partisrequired: thisis a set of tests that are performed on the tags of the item to be
converted.

» The second part is the action block that can be used to do things with the tags of objects that match the
testsand is contained in curly braces{. . .}.

» Thethird part is the element type definition and sets the Garmin type and sometimes other parameters
that will be used if the tests match. This part is contained in square brackets| . . .].

If you want to add two or more different map elements you can do this with repeated square brackets
following one expression| . . .]

Hereis an example of arule containing all three sections:

natural =cliff { name '${name} cliff' | 'cliff' } [Ox10501 resol ution 22]
* Thetestssectionisnatural =cl i ff
* Theactionblock is{ name ' ${nane} cliff' | 'cliff' }
» The element type definition iS[0x10501 resol uti on 22]

Asageneral point, space and newlines don’'t matter. Thereis no need to have rules all on the same line,
and you can spread them out over several lines and add extra spaces wherever you likeif it helpsto
make them easier to read.

Example with lots of extra space and newlines.

natural =cliff

{
name ' ${name} cliff'
| ‘cliff’
}

[
0x10501

resol ution 22

]

Stylerules

Example with all unneeded spaces removed.

natural =cliff{nane' ${nane} cliff'|"cliff"}[0x10501 resol ution 22]

4.1.1. Tag and text values

Tag names and vales are often single words consisting of letters and perhaps digits. If however avalue
(or tag, although that is less common) contains a space or punctuation character then the whole value
must be enclosed in quotation marks. Y ou can use either single quotes (') or double quotes ().

If your text contains a quote then you must use the other kind of quote around the value.
hi ghway=pri mary
"hi ghway" ="pri mary" # quotes not needed, but do no harm

nane=' Main Street' # quotes needed to keep 'Main Street' as one thing
nane="Ten O C ock Tavern" # Doubl e quotes used because text contains single quotes

4.2. Tag tests

The most common test is that a particular OSM tag has a given value. So for exampleif we have
hi ghway=not or way

This means that we look up the highway tag in the OSM input file and if it exists and has the value
motorway then this test has matched.

Y ou can also compare numeric quantities:
popul ati on > 10000
| anes >= 2
popul ati on < 10000000

Respectively, these mean: a population greater than ten thousand, aroad with at least two lanes and a
population less than one million.

Y ou may also use regular expressions:
ele ~ "\ d*00
This checks whether ele isamultiple of 100.

4.2.1. Allowed operations
The following table describes the operations that may be used.

Table4.1. Full list of operations

Operation description and examples

tag=value This matches when atag has the given value.

tag!=value Thisistrue when the tag does not have the given value, or the tag
isnot present at al.

tag=* Matches when the tag exists, regardless of its value.

tag!=* Matches when the tag does not exist.

tag < value Matches when the tag when converted as a number is less than

the given value. If the value is not numeric then thisis always

Stylerules

Operation description and examples

false. Thisis also the case if value contains a unit. Conversion
for the maxspeed tag can be done with the maxspeedkmh() and
maxspeedmph() function (see Functions).

tag<=value, Asabove, for lessthan or equal, greater than and greater than or
tag > value, tag equal.
>=value

tag ~REGEX Thisistrue when the value of the tag matches the given regular
expression. The Javaregular expression [http://docs.oracle.com/
javasel/7/docs/api/javalutil/regex/Pattern.ntml] syntax is
recognised. For examplename ~ ' . *[LI]ane' would match
every name that ended in Lane or lane.

I' (expr) The not operator (!) reverses the truth of the expression following.
That expression must be in parentheses.

4.2.2. Combining tag tests

Although it is possible to convert many OSM nodes and ways just using onetag, it is also often
necessary to use more than one.

For example, say you want to take roads that are tagged both as hi ghway=uncl assi fi ed and | anes>2
differently to roads that are just hi ghway=uncl assi fi ed. In thistype of case, you might create two
separate rules as follows:

hi ghway=uncl assified & | anes>2 [0x06]
hi ghway=uncl assi fi ed [0x05]

This means that roads that are unclassified and have more than two lanes would use Garmin element
type 0x06, whereas unclassified roads without alanes tag, or whereit isless or equal than 2 would use
type 0x05.

It isimportant to note that the order of the rulesisimportant here. The rules are matched in the order that
they occur in the style file and mkgmap stops trying to apply them after the first one that matches. If you
had the rules above in the reverse order, then the hi ghway=uncl assi f i ed rule would match first to any
OSM way with that tag/key pair, and the second rule would never get applied. Therefore, in general you
want the most specific rulesfirst and ssmpler, more general rules later on to catch the cases that are not
caught by the more complex rules.

Y ou can aso combine alternatives into the one rule using alogical or, represented with a pipe (|) symbol.
For example

hi ghway=f ootway | hi ghway=path [0x07]

Thismeansif the road has either the highway=footway tag or the highway=path tags (or both), then
the condition matches and mkgmap would use type 0x07 for the map. This works exactly the same as if
you had written two separate rules - one for footway and one for path - and indeed is converted to two
separate rulesinternaly when mkgmap runs.

You are not limited to two testsfor agiven rule... you can combine and group tests in almost whatever
way you like. So for adlightly forced example the following would be possible:

pl ace=town & (popul ati on > 1000000 | capital=true) | place=city

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Stylerules

Thiswould match if there was apl ace tag which had the value t own and either the population was over
amillion or it was tagged a capital, or there was apl ace tag with thevaluecity.

There used to be some restrictions on the kind of expression you could use. Now the only
restriction is you must have at least one test that depends on atag existing. So you cannot
match on everything, regardless of tags, or test for an object that does not have a tag.

4.2.3. Comparing the values of two tags

Sometimes you may want to compare the values of two tags, rather than the value of one tag with afixed
value. Use adollar sign to indicate that you want the tag value.

If you had the follow ng tags:
nanme=Ff ord- y- Mor

nane: en=Terrace Road

nane: cy=Ff ord-y- Mor

nanme
nanme

$nane:cy { } # this would natch
$nanme:en { } # and this would not

Thistestsif the value of the nare tag is the same as the welsh name tag (nane: cy)

It is worth noting that the normal case
hi ghway=pri mary

is exactly the same as
$hi ghway=pri mary

4.2.4. Functions

Functions calcul ate a specific property of an OSM element.

Table 4.2. Style functions

Function NodeWay Rel. Description

length() X X Cdculatesthe length in m. For relationsits the sum of all
member length (including sub relations).

area size() X Calculates area size in (garmin units)®. A non closed
way has an area_size() of 0. In case a polygon is an outer
part of a multipolygon the whole area size of all outer
multipolygon partsis returned.

The size of one (garmin unit)? in m? varies depending on
the latitude. Sample values:

5.71 m? at | atitude 0°
4.03 m? at (+-)45°
2.85 m? at (+-)60°
0.5 m? at (+-)85°

Is_complete() X true if al nodes of away are contained inthetile. f al se if
some nodes of the way are missing in thetile.

10

Stylerules

Function NodeWay Rel. Description

Is_closed() X t rue the way is closed (start and end point are the same).
f al se theway isnot closed and cannot be processed as
polygon.

maxspeedkmh() X Retrieves the value of the maxspeed tag converted to km/h.

maxspeedmph() X Retrieves the value of the maxspeed tag converted to mph.

type() X X X Rerievesthetype of the OSM element: node, way,
relation.

osmid() X X X Retrievestheid of the OSM element. This can be useful for

style debugging purposes. Note that due to internal changes
like merging, cutting etc. some element ids are changed and
some have afaked id > 4611686018427387904.

Is_in(tag,valuemethod)

x
x

true if the element isin polygon(s) having the specified
tag=value according to the method, f al se otherwise.
value can be *' which matches any polgon having tag. The
methods available depend on the Style section:

polygons: all - al of the closed way is within the
polygon(s). any - some iswithin.

points: in - the node iswithin apolygon. in_or_on - itis
within or on the edge. on - it is on the edge.

lines: all - part of the way is within the polygon(s), none
isoutside; it might touch an edge. all_in_or_on - noneis
outside. on - it runs along the edge. any - part is within.
none - part isoutside, noneisinside.

A common caseis aline outside the polygon that runs

to the edge, joining aline that isinside. The method to
match an outside line (none) allows part to be on the

edge, likewise, the method to match an inside line (all)
allows part to be on the edge. Compared to all, the method
all_in_or_on additionally matches lines which are only on
the edge of the polygon.

Is drive_on_left() X true theelement isin adrive_on_left country. f al se
the element is not adrive_on_left country or the
information given in the tags mkgmap:admin_level2
and mkgmayp:country could not be used to retrieve the
information.

The following rule matches for al service wayslonger than 50m.
hi ghway=servi ce & | engt h()>50

4.3. Action block

An action block isenclosed in braces{ ...} and contains one or more statements that can alter the
element being displayed; multiple statements are separated by *;” symbol. When there is an action block,
the element type definition is optional, but if used it must come after the action block.

11

Stylerules

A list of all the command that can be used in the action block follows. In the examples you will see
notation of the form ${ nane}, thisis how tag values can be substituted into strings, in a similar way to
many computer languages. For full details see the section on variable substitution.

4.3.1. add

The add command adds atag if it does not already exist. Thisis often used if you want to set the value of
atag as adefault but do not want to overwrite any existing tag.

For example, motorways are one way by default so we need to add the oneway=yes tag in the style so
that istreated as one way by the device. But there are some stretches of motorway that are one-way and
these will be tagged as oneway=no. If we used set then that tagging would be lost, so we use add.

hi ghway=not orway { add oneway=yes }

The other useisinin relations with the apply command.

All the same you can set any tag you want, it might be useful so you can match on it elsewhere in the
rules.

Y ou can also use substitutions.
{add nane='${ele}'; add nanme='${ref}"';}

These two commands would set the name tag to the value of the ele tag if it exists, or to the value of the
ref tag if that exists.

You can aso give alist of alternative expressions separated with a vertical bar in the same way as on the
name command. Thefirst one that is fully defined will be used.

{add key123 = '${nane:en}' | '${nanme}'; }

If keyl23 isnot set it will set key123 to the value of the name:en tag if it exists and to the name tag if
not.

4.3.2. set

The set command isjust like the add command, except that it sets the tag, replacing any existing value it
had.

4.3.3. delete

The delete command deletes a tag.
{ delete keyl23 }

4.3.4. deletealltags

The deletealltags command deletes all tags. Usually this stops all further processing of the element.
{ deletealltags }

4.3.5. addlabel

Each item in the Garmin map can have up to four labels. Usually only the first 1abel is displayed. On
some Garmin units the second label is used for routing instructions. The third and fourth label are known
to be used for address search only. The four labels can be assigned by setting the tags nkgnap: | abel : n
where n is anumber between 1 and 4.

12

Stylerules

The addlabel command assigns the first empty nmkgmap: | abel : n tag with the given value.
{addl abel ' ${name} (${ref})' | "${ref}' | '${nane}'}

If both the nane and r ef tags are are set, then the first alternative would be completed and the resulting
label might be Main & (Al). If just name was set, then the first two alternatives can not be fully and so
the final l1abel might in that case be Main S.

Highway shields can be used in thefirst label only. Y ou can use the notation ${ t agnane| hi ghway-
synbol : box}. Valid symbolsarei nt er st at e, shi el d, r ound, hbox, box and oval . The appropriate
kind of highway shield will be added to the value of t agname. The exact result of the way it looksis
dependent on where you view the map.

4.3.6. name

This setsthefirst label of the element but only if it isnot already set. Thisis a helper action. The same
effect can be produced with different notations as it is shown in the following example where al three
lines have the same effect.

{nane '${nane} (${ref})' | '${ref}' | '${nane}'}
{add nkgmap: | abel : 1=" ${nanme} (${ref})’' | '${ref}' | '${nane}'}
nkgnap: | abel : 1! =* {set nkgnap: | abel : 1="${nane} (${ref})’' | '${ref}' | '${nane}'}

4.3.7. addaccess

The "addaccess" action sets al unset mkgmap access restriction tags to the given value. Thisis a helper
action to avoid long action blocks.

{ addaccess 'no' }

isthe same as

{
add nkgnmap: f oot =no;
add nkgmap: bi cycl e=no;
add nkgmap: car =no
add nkgnmap: t axi =no;
add nkgmap: truck=no;
add nkgmap: bus=no;
add nkgnmap: ener gency=no;
add nkgmap: del i very=no
}

4.3.8. setaccess

The "setaccess' action sets all mkgmap access restriction tags to the given value no matter if they
already have avalue or not. Thisis ahelper action to avoid long action blocks.

{ setaccess 'no' }
isthe same as

{
set nkgnap: f oot =no;
set nkgnmap: bi cycl e=no;
set nkgnap: car =no;

13

Stylerules

set nkgmap:taxi =no;

set nkgmap: truck=no;

set nkgmap: bus=no;

set nkgmap: ener gency=no;
set nkgmap: deli very=no

}

4.3.9. apply

The "apply" action only makes sense in relations. Say you have arelation marking a bus route, but none
of the ways that are in the relation have any specia tags to indicate that they form part of that bus route,
and you want to be able to tell from looking at the map which buses go where. Y ou can writearulein
therelationsfile such as:

type=route & route=bus {

apply {
set route=bus;
set route_ref="${route_ref}';

}

Then in the lines file you will need to write arule to match route=bus. All the relation rules are run
before any others so that this works.

The substitution ${ r out e_r ef } takesthe value of the tag on the relation and appliesit to each of the
waysin therelation.

The substitution $(rout e_r ef) (with parenthesis, rather than curly braces) can be used for accessing the
value of the tag on the actually processed member of the relation, e.g.

type=route & route=bus {

apply {
set route=bus;
set nanme=' $(nane) ${route_ref}';

}

The "apply" action can be limited to members with a special role by adding role=rolevalue after the
apply keyword.

type=route & route=bus {
apply rol e=forward {
set route=bus;
set name=' $(nane) ${route_ref}';

}

4.3.10. apply_once

The apply_once action islike appl y, but it will apply the action once per relation member. A round-trip
route relation may include the same ways multiple times, unless all member ways have been defined as
parallel one way streets.

4.3.11. apply_first

The apply_first action islike appl y, but it will apply the action only to the first relation member as
appearing in the input file. In combination with the --add-pois-to-lines option this might be used with

14

Stylerules

route relations to mark the beginning of aroute, presuming that the relation is complete and ordered so
that the first member is the start of the route.
4.3.12. echo

The echo action prints the element id plus atext to stderr or to where directed by alogging configuration
file. This can be used for quality checks and debugging purposes. When using alogging configuration
file, the messages are logged with custom level ECHO (1200).

hi ghway=not orway_| i nk & oneway!=* { echo "nmptorway_link w thout oneway tag" }

4.3.13. echotags

The echotags action prints the element id, all tags and values plus a text to stderr or to where directed
by alogging configuration file. This can be used for style debugging purposes. When using alogging
configuration file, the messages are logged with custom level ECHO (1200).

hi ghway=Iliving_street { echotags "This is a living_street" }

4.4. Variables

Y ou can substitute the value of tags within strings in an action. A dollar sign ($) introduces the
substitution followed by the tag name surrounded by curly braces like so ${ nane} .

The most obvious use for variablesisin setting the name of the element. Y ou are able to use any
combination of tags to make the name from. Here we name afuel station by its brand and the operator in
parentheses following.

anmeni ty=fuel { name '${brand} (${operator})' } [0x2f01]

If the operator tag was not set, then the name would not be set because all substitutionsin a string must
exist for the result to be valid. Thisiswhy the "name" command takes a list of possibilities, if operator
was simply replaced with a blank, then you would have an empty pair of parentheses. So you would fix
the previous rule by adding another name option.

aneni t y=f uel
{ nane '${brand} (${operator})’' | '${brand}' }
[0x2f01]

If only the brand tag exists, then the first option will be skipped and the second will be used.

4.4.1. Variable filters

The value of avariable can be modified by filters. The value of the tag can be transformed in various
waly's before being substituted.

A filter is added by adding a vertical bar symbol "|" after the tag name, followed by the filter name, then
acolon ":" and an argument. If there is more than one argument required then they are usually separated
by colonstoo, but that isnot arule.

${tagnane|filter:"argl: arg2"}
Y ou can apply as many filter expressions to a substitution asyou like.

${tagname|filterl:"fl1Args"|filter2:"f2Args"}

15

Stylerules

For backward compatibility, most argument strings do not actually need to be quoted, however we
would recommend that you do for clarity. If you need a pipe symbol or aclosing curly backet, then you

must use quotes.

Table4.3. List of all substitution filters

Name Arguments Description
def def aul t If the variable is not set, then use the argument as a default value.
This means that the variable will never be ‘unset’ in places where
that matters.
${ oneway| def : "no"}
conv me>f t Use for conversions between units. With the argument m =\ >f t the
value is converted into feet, with the value being assumed to be in
meters, unless the value includes a unit already. If any of the units
are not recognised then the value is unchanged.
${ hei ght| conv: "m=>ft"}
Soif hei ght 1510, thentheresult is 33, and if hei ght is 10ft, then
theresult is 10, asit isaready in feet.
The possible units are:
» Length: m, km, ft (feet), feet, mi (miles).
e Speed: mph, km/h (or kmh, kmph), knots
* Waeight: t, kg, Ib (or Ibs)
subst frome>t o Substitutes all occurrences of the string f r omwith the stringt o in
from>to the tag value. The => operator can be used for an exact matches
while ~> accepts regular expressions in the f r omattribute.
t o can be empty to remove the f r omstring atogether.
Example, if name ="Queen Street"
${ nane| subst : "Queen=>"} returns" Street"
${ name| subst : "Queen=>Ki ng"} returns"King Street"
${ nane| subst:".*\s~>"} returns" Street"
part separ at or Split avalue in parts and returns one or more part(s) of it. If
oper at or par t nunber isnegative, the part returned is counted from the end of
par t nunber the split

If not specified, the default separator is; and the first part is returned
(i.e. ${nanme| part:""}=${nane| part:";:1"}).

If the operator is: the part specified by par t number isreturned.

If the operator is < or > the correspondent number of parts before or
after the par t nunber arereturned

Example: if the value is "Aa#Bb#Cc#Dd#EE"

${nane| part:"#: 1"} returnsAa

16

Stylerules

Name

Arguments

Description

${nane| part:"#:-1"} returns Ee

${nane| part:"#: 2"} returns Bb

${nane| part:"#: -2"} returns Dd

${nane| part:"#>1"} returns Bb#Cc#Dd#EeH
${nane| part:"#<5"} returns Aa#Bb#Cc#Dd#
${nane| part: "#<-1"} returns Aa#Bb#Cc#Dd#

This can be especialy useful for tags like ref, exit_to and destination
or to switch words, example if valueis "wordl1 word2 ... wordN-1
wordN"

${nane|part:" :-1"}, ${nane|part:" <-1"} returns"wordN,
wordl word2 ... wordN-1"

highway-
symbol

synbol : max-
num max- al pha

Prepares the value as a highway reference such as"A21" "1-80" and
so on. A code is added to the front of the string so that a highway
shield isdisplayed, any ;" are replaced by "/" and spaces are
removed.

${ref | hi ghway- synmbol : "box: 4: 8"}
See below for alist of the hi ghway- synbol values.

The first number is the maximum number of charactersto allow

for references that contain numbers and letters. The second isthe
maximum length of references that do not contain numbers. If there
isjust the one number then it is used in both cases. If no numbers are
given, the default value 8 is used.

If the reference, after spaces have been removed, islonger than
the maximum length then the filter passes the string onwards
unchanged; the highway-symbol is not prepended.

height

me>f t

Thisis exactly the same asthe conv filter, except that it prepends

a special separation character before the value which is intended

for elevations so that the Garmin software can convert it to the unit
configured by the user. If no argument is given the default ism=>f t ,
else the target unit must be ft (foot).

${el e| height:"m=>ft"}

country-1SO

Use to normalize country names to the 3 character SO 1366 code.
Thefilter has no arguments. It usesthe list in LocatorConfig.xml.
Possible inputs are country names, or SO codesin 2 or 3 characters,
for example "Deutschland”, "Germany", "Bundesrepublik
Deutschland”, or "DE" will al return "DEU", also different cases
like"GERMANY" or " germany " will work.

If the value is not found in the list, then the value is unchanged.

not-equal

tag

Used to check for duplicate tags. If the value of thistag is equal to
the value of the tag named as the argument to not - equal , then value
of thistag is set to undefined.

17

Stylerules

Name Arguments Description

pl ace=* {
name ' ${nanme} (${int_nane| not-equal : "nane"})
| ' ${nane}’
}

In that example, if the international name is different to the name
then it will be placed in parenthesis after the name. Otherwise there
will just be the name as given in the "name" tag.

substring start:end Extract part of the string. The start and end positions are counted
starting from zero and the end position is not included.

${nane| substring:"2:5"} If the"name" was "Dorset Lane", then
theresult is"rse". If there isjust the one number, then the substring
starts from that character until the end of the string.

not-contained separat or: tag Used to check for duplicate values. If the value of thistag is
contained in the list being the value of the tag named as the
argument to not - cont ai ned, then value of thistag is set to
undefined.

type=route & route=bus & ref=* {
apply {
set route_ref=
"$(route_ref),${ref| not-contained:", :route_ref"}'
| "$(route_ref)' | "${ref}’;
}
}

Here, ref valueisonly addedtorout e_ref whenitisnot aready
contained in that list (with separator ,). Otherwise, the value of
rout e_r ef isunchanged. This helpsto get correct labeling (no
duplicates) for public transport lines where there can be multiple
relations with the samer ef attribute (e.g. one for the forward and
one for the backward direction).

For example, if rout e_r ef wasalready "1,2,150" and r ef would
again be "150", this value would not be added to thelist asit is
aready there. In contrast, r ef equal to "229" would be added, so
after that r out e_r ef would have the value "1,2,150,229"

4.4.2. Symbol codes

Hereisalist of al the symbols that can be created with images to give an idea of where they should be
used. The actual symbol will depend on the device that it is displayed on.

Table 4.4. Highway symbol codes

Shield name Symbol Description

interstate @ US Interstate, digits only

shield US Highway shield, digits
only

18

Stylerules

Shield name Symbol Description

round US Highway round, digits
only

hbox a0 | Box for mgjor roads

box Box for medium roads

oval Box for smaller roads

4.5. mkgmap internal tags

There are lots of tags prefixed with nkgmap: . Some of them need to be set in the style file to set specific
attributes of the Garmin map elements, e.g. access restrictions, labels, attributes required for address
search etc. Others are added to the OSM elements by mkgmap so that they can be evaluted in the style
files to change the processing.

4.5.1. Tags evaluated by mkgmap

These tags need to be set within the style file to set specific attributes of the Garmin map elements.

| hi ghway=* & (bi cycl e=no |

This rule defines that the road cannot be used by bicycles.

Table 4.5. Tagsfor routableroads

bi cycl e=private) { set nkgmap: bicycle="no" }

Attribute mkgmap tag Example Notes
Labels mkgmap: | abel : 1 Eastern Usually only thefirst label is
mkgmap: | abel : 2 Avenue displayed. On some units the
mkgmap: | abel : 3 Al112 second label of roadsis displayed
mkgmap: | abel : 4 asrouting instruction. All labels are
used for address search.
Country mkgmap: country GBR Three letter ISO code, e.g. for GBR
United Kingdom
Region mkgmap: r egi on London The regions name. Useful if there
Borough of are multiple cities with the same
Waltham name.
Forest
City mkgmap: ci ty London
Street mkgmap: st r eet High Road Thisvalueis used by house number
Leyton search to match the addr : st r eet
tag of an OSM element with house
number to the corresponding road.
It must be set so that house number
search isworking.
Zipcode mkgmap: post al _code E10 5NA

19

Stylerules

Attribute mkgmap tag Example Notes

Accessrestrictions nmkgmap: f oot no These tags are evaluated for
mkgmap: bi cycl e routable lines (roads) only. By
mkgmap: car default access for a specific vehicle
mkgmap: t axi typeisalowed. Only in case the
mkgnap: t ruck value of thetag isno accessis
mkgmap: bus blocked for the given type.
nkgmap: ener gency
nkgmap: del i very

Throughroute mkgnap: t hr oughr out e no If thistag is set to no routing is
allowed on thisroad only if the
start or end point lies on the road.

Carpool lane mkgmap: car pool yes If thistag is set to yestheroad is
marked to have a carpool lane. This
does not seem to work on all units.

Toll road mkgmap: t ol | yes If thistag is set to yes the road
can be used only when paying a
specific toll.

Unpaved mkgmap: unpaved yes If thistag is set to yestheroad is
marked to be unpaved. Some units
can avoid unpaved roads.

Ferry mkgmap: ferry yes If thistag is set to yesthelineis
marked to be aferry line. Some
units can avoid ferry lines.

Road speed mkgmap: r oad- speed-cl ass 2 A value between 0 and 7. Overrides
ther oad_speed definition in the
element type definition if thistag is
Set.

Road speed mkgnap: r oad- speed +1 Modifies the road speed class by

modifier the given value. In casethevalueis
prefixed with + or - the road speed
classis modified. In case the value
does not start with + or - the road
speed class value of the element
type definition is overriden.

Road speed limiters nkgmap: r oad- speed-ni n 5 Defines the minimum/maximum

mkgmap: r oad- speed- max road speed class. This can be used
to limit the modification of the road
speed class (nkgmap: r oad- speed).

Road class mkgmap: r oad- cl ass -1 Modifies the road class defined in

the element type definition. In case
the valueis prefixed with + or - the
road class is modified. In case the
value does not start with + or - the

20

Stylerules

Attribute mkgmap tag Example Notes

road class value of the element type
definition is overriden.

Road class limiters nkgmap: road-cl ass-ni n 2 Defines the minimum/maximum
mkgmap: r oad- cl ass- max road class. This can be used to limit
the modification of the road class
(mkgmap: r oad- cl ass).

Table4.6. Tagsthat control the treatment of roads

Tag Description Required mkgmap
option
mkgmap: way- has- poi s t rue for waysthat have at least link-pois-to-ways

one point with atag access=*,
barri er=*, Or hi ghway=*

mkgmap: dead- end- check Set tof al se to disable the dead report-dead-ends
end check for a specific way

mkgmap: f | ar e- check Set tot rue to force the flare check check-roundabout-flares
for aspecific way, settof al se to
disableit

mkgmap: di r - check Settof al se to tell mkgmap to check-roundabouts

ignore the way when checking
roundabouts for direction

mkgmap: no- di r - check Set to t r ue to tell mkgmap to check-roundabouts
ignore the way when checking
roundabouts for direction

mkgmap: synt hesi sed Set to t r ue to tell mkgmap that check-roundabouts,
thisis an additional way created check-roundabout-flares
using the continue statement in an
action block and that it should be
excluded from checks

nkgnmap: set _unconnect ed_t ype Set to none to remove unconected
roads from the map once that al
roads are known, or to avalid line
typeif you want anormal line
instead of aroad. Works also with
overlay linesfor the same way.

mkgmap: set _sem _connect ed_t ype Like
mkgmap:set_unconnected_type,
but matches for roads with exactly
one connection to other roads

Table4.7. POl addresstags

Attribute mkgmap tag Example Notes

Name mkgmap: | abel : 1 Pizza Express Names of the POI

21

Stylerules

Attribute mkgmap tag Example Notes
nkgmap: | abel : 2
nkgmap: | abel : 3
nkgmap: | abel : 4
Country mkgmap: count ry GBR Three letter SO code,
e.g. for GBR United
Kingdom
Region mkgmap: r egi on Nottinghamshire The regions name.
Useful if there are
multiple cities with the
same hame.
City mkgmap: ci ty Nottingham
Street mkgmap: st r eet King Street
Housenumber mkgmap: housenunber 20
Zipcode mkgmap: postal _code NGI1 2AS
Phone mkgmap: phone +44 115 999999 Phone number in any

format

o Wikipedia [http://en.wikipedia.org/wiki/l SO_3166-1_alpha-3] hasalist of al 1SO 3166-1

alpha 3 codes

4.5.2. Tags added by mkgmap

Some tags are added by mkgmap to indicate some property calculated by mkgmap.

| nkgmap: admi n_I evel 2=* { add nkgnap: count ry="${nkgnap: adm n_| evel 2}"' }

Thetag mkgmap: admi n_| evel 2 isadded to each OSM element if the bounds option is set. Intherule
above it is used to assign the country location.

Table 4.8. Tags added by mkgmap

Tag

Description

Required mkgmap option

nmkgmap: admi n_I evel 2

Name of the

boundar y=adm ni strati ve
relation/polygon with
adm n_| evel =2 theelement is

located in

bounds

nkgmap: admi n_I| evel 3

Name of the

boundary=adm ni strati ve
relation/polygon with
adnmi n_| evel =3 theelement is

located in

bounds

nkgmap: admi n_I evel 4

Name of the

boundary=admi ni strati ve
relation/polygon with

bounds

22

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

Stylerules

Tag Description Required mkgmap option
adnmi n_| evel =4 theelement is
located in

mkgmap: admi n_| evel 5 Name of the bounds
boundary=admi ni strati ve
relation/polygon with
adnm n_| evel =5 theelement is
located in

nmkgmap: admi n_| evel 6 Name of the bounds
boundar y=admni ni strati ve
relation/polygon with
adnmi n_| evel =6 theelement is
located in

mkgmap: admi n_| evel 7 Name of the bounds
boundar y=admi ni strative
relation/polygon with
adnmi n_| evel =7 theelement is
located in

mkgmap: admi n_| evel 8 Name of the bounds
boundary=admi ni strative
relation/polygon with
adnmi n_| evel =8 theelement is
located in

mkgmap: admi n_| evel 9 Name of the bounds
boundar y=admi ni strative
relation/polygon with
adm n_| evel =9 theelement is
located in

mkgmap: admi n_| evel 10 Name of the bounds
boundary=adm ni strati ve
relation/polygon with
adni n_| evel =10 theelement is
located in

mkgmap: admi n_| evel 11 Name of the bounds
boundar y=admi ni strati ve
relation/polygon with
adnmi n_| evel =11 theelement is
located in

nmkgmap: post code Name of the postal code relation/ bounds
polygon the element is located in

mkgmap: r esi dent i al Name of the residentia relation/ none
polygon the element is located in
or yesif unnamed

mkgnap: ar ea2poi Thevaueistrue if thePOl is add-pois-to-areas

derived from a polygon

23

Stylerules

Tag Description Required mkgmap option

mkgmap: | i ne2poi Thevaueistrue if thePOl is add-pois-to-lines
derived from aline

mkgmap: | i ne2poi t ype Thetagisset for each POI add-pois-to-lines
generated from aline. Possible
vauesare: start, end, md,
i nner .

mkgmap: f r om node: at t nane The attribute is set for each POl add-pois-to-lines
generated from aline. These are
the original attributes of the node
(part of the line) from which the
point was generated

mkgmap: way- | engt h Thetag is set for each POI add-pois-to-lines
generated from aline. It gives the
way length rounded to meters.

mkgmap: exi t _hi nt t rue for the part on link roads process-exits
that should contain information
about the exit
mkgmap: exi t _hi nt _nane The nane tag value of thelinks process-exits
exit node
mkgnap: exit _hint _ref Theref tag value of the links exit process-exits
node
mkgmap: exit_hint_exit_to Theexit _t o tag value of the process-exits
links exit node
mkgmap: dest _hi nt Thetag is set to areasonable process-destination

destination value for the part on
link roads that should contain
destination information about the
link

mkgmap: synt hesi sed Thevalueisyes if theway was make-opposite-cycleways
added by the make-opposite-
cycleways option

mkgmap: np_cr eat ed Thevalueistrue if theway was none
created by the internal multi-
polygon-relation handling

mkgmap: opt i on: <key> Tag generated by the --style- style-option
option option

Table 4.9. Other internal tags

Tag Description

mkgmap: ski pSi zeFi | ter If settot rue theline or polygon will passthe size
filter, no matter what size it has

24

Stylerules

Tag Description

mkgmap: hi ghest -resol uti on-only If settot r ue the object will only be added for the
highest resolution configured in the element type
definition.

mkgnmap: execute_finalize_rules If set tot r ue mkgmap will execute the finalize

rules even if no object is created fot the element.

mkgmap: nurber s If settof al se for anode or way mkgmap will
ignore the object in the calculations for the --
housenumber option

mkgmap: dr am_evel Set to a number from 1 to 100. Overrides the
polygon areathat is used by --order-by-decreasing-
area. 1..50 are larger than typical polygons and be
overwritten by them, 51..100 are smaller and will
show. Higher drawLevels will show over lower
values.

mkgmap: styl efilter Set to either polyline or polygon for ways which
have mkgmap: mp-created=true. Is used to decide
which rules should be used. Should not be set or
modified in the relations style.

4.6. Element type definition
As noted above thisis contained in square brackets and if used must be the last part of therule.

Thefirst and only mandatory part of this section is the Garmin type code which must always be written
in hexadecimal. Following this the element type definition rule can contain a number of optional
keywords and values.

4.6.1. level

Thisisthe highest zoom level that this element should appear at (like EndLevel in the mp format). The
lower the level the detailed the view. The most detailed, most zoomed in, level islevel 0. A map will
usually have between three and five levels. If the level for an object is not given then it defaultsto 0 and
so the specified feature will only appear at the most detailed level.

In the following example, we set highways to appear from zoom level 4 down to zoom level O:

hi ghway=not or way [O0x01 | evel 4]

You can usel evel to place elementsinto the layers of the map that you want but you can’t
force the device to actually display them.

Some pieces of software (such as QLandkarteGT, | believe) will honour your selections,
but actual GPS devices have their own ideas about which POI’ s can be shown at which
resol utions.

Level ranges. You can also give arange (e.g. 1-3) and the map will then contain the object only
between the specified levels.

hi ghway=not orway [0x01 | evel 3-5]

25

Stylerules

In this example, motorways will appear at zoom level 5, which is most zoomed out, and continue to be
visible until zoom level 3, which is moderately zoomed in, and then will not be shown in zoom levels 2,
1 and 0 (most zoomed-in).

for interesting effects where a different representation takes over at the lower zoom levels.
For example a building may be apoint at high levels and then become a polygon at lower
levels.

o Of course you are unlikely to want a feature to disappear as you zoom in, but this can be used

4.6.2. resolution

Thisisan alternative way of specifying the zoom level at which an object appears. It is specified as a
number from 1-24, which corresponds to one of the zoom levels that Garmin hardware recognises. Y ou
should not use resolution if you have used level as they achieve the same outcome.

In either case, the mapping between level and resolution is given in the options style file, where you will
see something like this:

The |l evels specification for this style
#
level s = 0:24, 1:23, 2:22, 3:20, 4:18, 5:16

This setslevel zero equal to resolution 24, level 1 to resolution 23 and so on.

Although the default style usesr esol ut i on rather than | evel it ison the whole much easier to use
| evel asitisimmediately clear where the element will end up. If you usear esol uti on that is
‘between’ two levels for exampleit will only show up in the lower one.

Resolution ranges. Just as with levels, you can specify arange of resolutions at which an object
should appear. Here is an example.

hi ghway=r esi denti al [0x06 resolution 16-22 continue]
hi ghway=r esi denti al [0x07 resol ution 23-24]

This example creates roads of type 0x06 between resolutions 16 and 22, then roads of type 0x07 between
resolutions 23 and 24. This example makes use of the continue statement, which is discussed in more
detail below.

Since 24 is the default upper bound for arange, that second range could just have been
o written as the single number ‘23'.

4.6.3. default_name

If the element has not aready had a name defined elsewherein the rule, it will be given the name
specified by def aul t _name. This might be useful for things that usually don’t have names and don’t
have a recognisable separate Garmin symbol. Y ou could give a default name of ‘bus stop’ for example
and all bus stops that didn’t have their own name would now be labelled as such.

o Be careful to use this sparingly and not overwhelm the map or the search.

4.6.4. road_class

Setting this makes the line a"road" and it will be routable and can be part of an address search. It gives
the class of the road where class 4 is used for major roads that connect different parts of the country,

26

Stylerules

class 3 is used for roads that connect different regions, down to class O which is used for residential
streets and other roads that you would only use for local travel.

It isimportant for routing to work well that most roads have lower classes and there are fewer and
fewer roads in each of the higher classes. Also, the class of connector roads (links, roundabouts, ramps)
matches the class of the highest class of roads being connected.

Table 4.10. Road classes

Class Used as

4 Major HW/Ramp

3 Principal HW

2 Arterial St/ Other HW

1 Minor or Service road

0 Residentia Street / Unpaved

road / Trail

4.6.5. road_speed

Thiskeyword is used along with r oad_cl ass to indicate that the lineis a"road" that can be used for
routing and for address searches. It is an indication of how fast traffic on theroad is. O is the slowest and
7 the fastest. Thisis not a speed limit and does not activate the maximum speed symbol on the newer
Garmin car navigation systems. The speed limits that Garmin knows are shown in the following table:

Table4.11. Road Speeds

road_speed highest speed

No speed limit

70 mph / 110 kmh
60 mph / 90 kmh
50 mph / 80 kmh
35 mph/ 60 kmh
25 mph / 40 kmh
15 mph /20 kmh
3 mph/5kmh

OR[N W ~lfoOlO|

4.6.6. continue

As discussed above, style rules are matched in the order that they occur in the style file. By default, for
any given OSM object mkgmap will try each rule in turn until one rule wth a element type definition
matches; it will then stop trying to match further rules against the current OSM object. If the rule only
has an action block mkgmap will continue to find other matches.

However, if you add a continue statement to the definition block of arule, mkgmap will not stop
processing the object but will instead carry on trying to match subsequent rules until it either runs out of
rules or finds a matching rule that does not include a continue statement.

Thisfeature is used when you want more than one symbol to result from asingle OSM element. This
could be for clever effects created by stacking two lines on top of each other. For example if you want to

27

Stylerules

mark a bridge in adistinctive way you could match on br i dge=yes, you would then amost always use
cont i nue SO that the hi ghway tag could be matched later. If you failed to do this then there might be a
break in the road for routing purposes.

Note that when using the continue statement, the action block of the rule (if thereis one) will only
be applied within this rule and not during any following rule matches. Use the continue with_actions
statement if you want to change this behaviour (see next section).

4.6.7. continue with_actions

The with_actions statement modifies the continue behaviour in such away, that the action block of this
ruleis also applied, when this element is checked for additional conversions.

Example of a full element type definition.

[0x2 road_cl ass=3 road_speed=5 | evel 2
default _name 'exanple street’' continue wth_actions]
4.7. Including files

Its often convenient to split afile into smaller parts or to use the same rules in two different files. In
these cases you can include one rule file within another.

i ncl ude "inc/conmon";

Here some common rules have been included in arule file from adirectory called "inc" within the style.
Note that the line ends in a semi-colon which is easy to forget.

The included files don’t have to be |ocated within the style and can be anywhere else.

When you include afile, the effect is exactly asif you had replaced the include line with the contents
of thefile. Ani ncl ude directive can occur anywhere that arule could start, and it is possible to include
another file from with in the file that is included.

Including from another style. Itisaso possibleto include afile from another style. To do thisyou
simply add f r om st yl enane to the end of the include statement.

i ncl ude "points" fromdefault;

That will include the poi nt s file from the default style. This might be useful if you want to only change
afew things about the default style.

4 8. Finalize section

The points, lines and polygons style files can have afinalize section at the end of the stylefile. It starts
withtheline<final i ze>

The finalize section contains actions only and must not have an element type definition. Itsrules are
executed each time an element type definition in the style file matches. The finalize section is often
useful to set the mkgmap internal tags.

Example 4.1. Finalize section in the linesfile with access handling

Two elements tagged with

28

Stylerules

Way 1: hi ghway=not orway, ref=Al
Way 2: hi ghway=service, name=Mai n Road, access=no, foot=yes, bicycle=yes

using the linesfile

hi ghway=not or way [0x01 road_cl ass=4 road_speed=7 resolution 15]
hi ghway=servi ce [0x07 road_cl ass=0 road_speed=1 resol ution 24]

<finalize>

hi ghway=* { nane '${nane} (${ref})' | '${nanme}’ | '${ref}' }
hi ghway=not orway { add bicycl e=no; add foot=no }
bi cycl e=* { add nkgmap: bi cycl e=' ${bi cycle}"' }
f oot =* { add nkgmap: f oot =" ${foot}' }
access=* { addaccess ' ${access}' }
will result in

Way 1: hi ghway=not orway, ref=Al, nkgmap: | abel:1=Al, nkgmap: f oot =no,
nkgmap: bi cycl e=no

Road 1 in Garmin map: Type 0x01, Name 'Al', no access for bicycle and foot

Way 2: hi ghway=service, name=Mai n Road, access=no, foot=yes, bicycle=yes,
nkgmap: | abel : 1=Mai n Road, nkgmap: f oot =yes, nkgmap: bi cycl e=yes,
nkgmap: car =no, nkgmap:truck=no, nkgmap: bus=no,

Road 2 in Garmin map: Type 0x07, Name 'Main Road', no access for all vehicle

types except bicycle and foot

Actionsin the finalize section are not persistent in terms of the cont i nue or cont i nue
wi t h_acti ons statement

4.9. Style syntax extension if then else

To avoid the repetition of expressions you can use the following syntax: if (tests) then i-rule(s) end
or

if (tests) then rule(s) else e-rules(s) end

Ruleswithini f and end must be written with an expression. The shortest valid expression is
apair of round brackets ().

So, instead of

boundar y=adm ni strative { name ' ${nkgmap: boundary_nane}"' }
boundary=admi ni strative & adm n_| evel <3 [Oxle resolution 12]
boundary=admi ni strative & adm n_|l evel <56 [0x1d resol ution 19]
boundary=admi ni strative & adm n_| evel <7 [0Ox1lc resol ution 21]
boundary=admi ni strative & adm n_| evel <9 [0Ox1lc resol ution 22]
boundary=admi ni strati ve [Ox1lc resol ution 22]

you may write

i f (boundary=adm nistrative) then
() { nane '${nkgmap: boundary_nane}' }
adm n_| evel <3 [0xle resolution 12]
adm n_| evel <5 [0x1d resol ution 19]
adm n_| evel <7 [0x1lc resol ution 21]

29

Stylerules

adm n_| evel <9 [Ox1lc resolution 22]
() [Oxlc resolution 22]
end

If statements may also be nested and you can also use them in combination with the include statement.

i f (nkgnmap: option:routing=car) then
i nclude "inc/car-rules";

end

i f (nkgnmap: option:routing=bicycle) then
i nclude "inc/cycle-rules";

end

4.10. Troubleshooting

For each node/way/relation, mkgmap goes through the tags exactly once in order from the top of thefile
downward. For each rule that matches, any action block will be run. As soon as arule that ends with a
type definition is found then processing stops and that is the Garmin symbol that is produced.

The only exception isif the Type Definition contains the cont i nue statement. In that case mkgmap will
continue looking for further matches.

» Where possible always have the same tag on the left. Thiswill make things more predictable.

» Always set made-up tag names if you want to also match on them later, rather than setting tags that
might be used aready.

* Usetheecho and echot ags actions to understand what’ s going on during style processing.

4.11. Some examples
The following are some examples of style rules, with explanations of what they do.

4.11.1. Simple examples

In the majority of cases everything isvery simple. Say you want roads that are tagged as
highway=motorway to have the Garmin type 0x01 ("motorway") and for it to appear up until the zoom
level 3.

Then you would write the following rule.
hi ghway=not orway [0x01 | evel 3]

Nodes that have an id and a subid are referenced by concatenating both ids.
aneni ty=bank [0x2f06 |evel 3]

Thiswill be explained in more detail in the following sections along with how to use more than one tag
to make the choice.

For aroundabout you may want to use the special Garmin type Oxc in combination with an overlaying
way that shows the road importance. Y ou can do this with two ruleslike this

junction=roundabout & (highway=tertiary | highway=tertiary_|ink)
[Ox0c road_cl ass=1 road_speed=1 resol ution 24 conti nue]

junction=roundabout & (highway=tertiary | highway=tertiary_|ink)
[0x10804 resol ution 21]

30

Stylerules

or shorter with one rule that has two type definitions

junction=roundabout & (highway=tertiary | highway=tertiary_link)
[Ox0c road_cl ass=1 road_speed=1 resolution 24] [0x10804 resol ution 21]

4.11.2. More involved examples

A few tips and tricks showing how the rules can be used to create aimost any effect.

Example 4.2. nternet cafes

anmeni ty=cafe & internet_access=wl an {nane '${nane} (wifi)'} [O0x2al4d resol ution 23]

Checksto seeif an OSM object has both the amenity=cafe and internet_access=wlan key/tag pairs. If
name=Joe’ s Coffee Shop, then the Garmin object will be named Joe' s Coffee Shop (wifi). The Garmin
object used will be 0x2al4 and the object will only appear at resolutions 23 and 24

Example 4.3. Guideposts

i nf or mati on=gui depost

{ nanme '${nane} - ${operator} - ${description} '
| *${nanme} - ${description}'
' ${ nane}'

" ${description}’
' ${operator}’

|
|
|
| "${ref}"

}

[0x4c02 resol ution 23 default _nanme 'Infopost']

Checksto see if an OSM object has the information=guidepost key/tag pair. If so then the name will be
set depending on the available nane, oper at or and descri pti on tagsasfollows.

1. If for example we have the tagsname="Rout e 7", oper at or =" Ki zomba Nati onal Parks" and
description="Trail signpost",thenthe Garmin object will be named Route 7 - Kizomba
National Parks - Trail signpost.

2. If the OSM object just has the nane and descri pti on tags set, the Garmin object will be named
Route 7 - Trail signpost

3. If just the nane tag is available, the Garmin object will be named Route 7
4. If just thedescri pti on tag is available, the Garmin object will be named Trail signpost;
5. andif just the oper at or tag isavailable, the Garmin object will be named Kizomba National Parks.

The Garmin object used will be 0x4c02 and will only appear at resolutions 23 and 24

Example 4.4. Car salesrooms
shop=car {nane '${nane} (${operator})’' | '${nanme}' |'${operator}'} [0x2f07 resol ution 23]

If name="Alice' s Car Salesroom" and operator=Nissan, the Garmin object will be named Alice's Car
Salesroom (Nissan)

31

Stylerules

Example 4.5. Opening hoursin postcode field

Thisisatrick to get opening hoursto show up in the postcode field of a POI. Trickslike this can
enhance the map for certain uses, but of course may prevent the proper use of the postcode field.

openi ng_hours=* {set addr:postcode = '${addr: postcode} open ${openi ng_hours}'
| 'open ${opening_hours}'}

For any OSM object which has the opening_hours key set to avalue, this sets the postcode to include
the opening hours. For example, if addr:postcode=90210, addr:street=Alya Street, addr:city=L agos and
addr:housenumber=7 and opening_hours=09.00-17.00, the address field of the Garmin POI will be 7,
Alya Street, Lagos, 90210 open 09.00-17.00.

Example 4.6. Mountain Passes depending on the way they belong to

nmkgmap: f r om node: nmount ai n_pass=yes & hi ghway=* & hi ghway! =path & hi ghway! =t rack
{set nkgmap: | abel : 1=" ${ mkgmap: f rom node: nane}'} [0x5208 resol ution 24-14]

Note: Thisonly works if you activated --add-pois-to-lines. When you activate this option, all points of a
line (away in OpenStreetMap) generate a point.

Those points attributes are those from OpenStreetMap’ s way. The specific node’ s attributes are set as
mkgmap:from-node:attribute_name. For instance, here, all points from away are available to a " points"
rule. We're looking for mountain passes, but only if they can be reached by something else than a path
or atrack. So we match all points that belong to away that’s not a path or atrack, and where the original
point is tagged as a mountain pass.

Please note that if the point is part of several ways, you'll get duplicates (you could use --nearby-poi-
rulesto solvethis).

32

Chapter 5. Creating a style

5.1. Testing a style

Y ou can test your style by calling mkgmap with the - - st yl e- fi | e=path-to-styleand the - - | i st -

styl es option. If you see your style listed, then your style is recognized by mkgmap. Additional tests
are performed if you use the - - check- st yl es option. The type values are verified to make sure that they
arevalid. Further checkstry to find rules which assign a routable type to a line without making it a road
by assigning road_class or road_speed. Thisis known to cause problems with routing in routable maps.
Then you can test if your styleisvalid by using it when creating amap. A style can be used just asit was
created, but if you want to make it available to othersit will be easier if you make a zip file out of it and
then you just have the onefile to distribute. Y ou just can zip al files of the style. Several different styles
can be placed into the same zip archivefile.

To use azipped style, you can use- - styl e-fi | e=stylename. zi p. If there is more than one stylein the
zipfile, thenyou can use- - styl e-fi | e=zZipname. zi p - - st yl e=Stylename.

5.1.1. Tests performed by check-styles

The - - check- st yl es option verfies that your style uses type values which can processed by mkgmap.
The following rules are verified:

1. If atypeis>= 0x0100 (meansit has more than one byte), the rightmost byte must be between 0x00
and 0x1f, so e.g. Ox011f is ok, 0x0120 is not.

2. If atypeis>= 0x010000, it is an extended type, which can be used for points, lines, and polygons.

3. If the typeis not extended, it must be >= 0x0100 for a point, < Ox3f for aline, and < Ox7f for a
polygon.

4. The polygon type Ox4ais reserved for the overview map.

5. It isknown that the usage of routable types for non-routable lines in resolution 24 can cause routing
problems (e.g. address search doesn’t work). The check will flag rules that assign a routable type for
alinein resolution 24 without giving road_class or road_speed. A routable type is between 0x01 and
0x13 or one of: Ox1a, Ox1b, 0x16.

6. If road classor road_speed is given in combination with a non-routable type, the rule is flagged.

5.2. Making a style package

A style can be used just as it was created, but if you want to make it available to othersit will be easier if
you combine all theindividual filesinto asingle archivefile.

5.2.1. Zip archive

The first way of doing thisisto combine the filesinto a zip file and then you just have the onefile to
distribute.

To use azipped style, you can use --style-file=stylename.zip

It does not matter if you include the directory holding the files or not in the archive. The style is found
by searching for thever si on file.

33

Creating astyle

Y ou can have more than one style in the zip file, each in their own directory. In this case you must
include the top level directories of the style (and you can include other parent directories as well if you
like). If there is more than one style in the zip file, then you can use the - - st yl e option alongside the - -
styl e-fil e option. --style-file=zipname.zip --style=stylename.

Example5.1. Style package layout

T-- nystyles

| -- cycle
| |-- lines
| | -- points
| |-- polygons
| T-- version
“-- hiking

|-- lines

| -- points

| -- pol ygons
T-- version

Here there are two styles named cycle and hiking. You can select the *hiking’ style with the options --
style-file=mystyles.zip --style=hiking
5.2.2. Simple file archive

Thisisformed by appending all of the files of astyle into asingle file separated by lines that contain the
file namein triple angle brackets.

Singlefile archive.

<<ver si on>>>
0

<<<poi nt s>>>
aneni t y=doct or [0x2a2a | evel 0]
More point definitions here..

<<<| i nes>>>
All the line definitions here..

The file must have aname endingin . st yl e to be recognised.

Thisfile can be easily created in its entirity in atext editor, but you can also convert between the files-in-
a-directory format and the single-file format using the following command:

(to be typed all on one line)
java -cp nkgnmap.jar uk.ne.parabol a. rtkgmap. osnstyl e. Styl el npl

nmystyle > nystyle.style

To convert back then supply the file as the argument, rather than the directory.

5.2.3. The Garmin Map

Each Garmin map may contain several separate maps which are prepared at different levels of detail, the
most appropriate of these is displayed depending on the zoom selected by the user.

When creating the map, the map maker will choose which of these level mapsis displayed according to
the resolution (or zoom) selected. For example, a map might contain three levels (0, 1 & 2); On the level

34

Creating astyle

2 map (showing the largest area) atown might just be represented by a named dot; as the user zoomsin,
the display might switch to the level 1 map showing an outline of the town. Zooming in further might
switch to the level 0 map, with the individual streets of the town shown.

'In addition the GPSitself might decide when to show or hide individual featuresin each of the 'level
maps, especialy with POIs. Thisis also affected by the detail setting in the map config menu.”

5.2.4. Resolution

Thefirst isresolution thisis a number between 1 and 24 with 24 being the most detailed resolution and
each number lessis half as detailed. So for exampleif aroad was 12 unitslong at resolution 24 it would
be only 6 at resolution 23 and just 3 at resolution 22.

On a Legend Cx the resolution corresponds the these scales on the device:

Table5.1. Resolutions

Resolution Scale on device

16 30km-12km
18 8km-3km
20 2km-800m
22 500m-200m
23 300m-80m
24 120m-50m

It may be dlightly different on different devices. There is an option to increase or decrease the detail and
if you change that from Normal then it will change the values above too.

5.2.5. Level

The next islevel. Thisisanumber between 0 and 16 (although perhaps numbers above 10 are not
usable), with O corresponding to the most detailed view. The map consists of a number of levels starting
(usualy) with 0. For example 0, 1, 2, 3 and a different amount of detail is added at each level.

The map also contains atable to link the level to the resolution. So you can say that level O corresponds
to resolution 24.

This mapping is specified in the file options within the style directory in use. Y ou can aso specify it on
the command line, for example:

--level s=0: 24, 1: 22, 2: 20

This means that the map will have three levels. Level 0 in the map will correspond to resolution 24 (the
most detailed), level 1 will show at resolution 22 (between scales of 500m and 200m) and so on. The
lowest level needs to include at least an object, therefore the default lowest level of 16 will create a
broken map, if your osm input file has no information at zoom level 16 or lower included.

Watch out with levels when building topographical maps

According to the principle that amap is never allowed to have an empty layer, if you have two input
files for mkgmap, you have to specify --levelsfor each input file. Thisis especially important when one
of the input files consists exclusively of contour lines. Take the following command as example on how

35

Creating astyle

to create such amap. (Attention the line wrap is only here for the wiki, this has to be one command in
cmd.exe or terminal)

java -jar nkgmap.jar --style-file=D:\path\to\nkgmap\resources\styles\style name \
--level s=0: 24, 1: 22, 2: 20, 3: 18, 4: 16, 5: 14, 6: 12, 7: 10 data. osm
--level s=0: 24, 1: 22, 2: 20 srtm osm

This would assume that your contour lines arein layer 24 (minor), 22 (medium) and 20 (major) and your
normal osm data spread between 24 and 10. If you don’t adhere to proper levels you will get problems
with the map not displaying at lower zoom levels, not displaying at higher zoom levels or not displaying
at al (you'll only see the background polygon 0x4c).

There are 2 dternatives to circumvent having to assign different levels on compile. a) Introduce dummy
objects at the lowest level into your map. A POI in the lowest level per input fileis enough. b) Merge
your osm files (either by script or in text editor (text editor may crash though on opening huge .osm
files), and then use the lowest resulting level. Concluding the easiest is to include dummy objects at
lowest level. (it should be thought about mkgmap doing this by default). The lower your lowest level
the later the basemap will exchange your osm map. Y our lowest level object is the defined by the object
with the lowest level (as defined in your style) actually present in your osm input file.

36

Chapter 6. About

6.1. Licence

This manual is released under the Creative Commons Attribution-ShareAlike 2.0 license [http://
creativecommons.org/licenses/by-sa/2.0/]. It makes use of some material that was added to the OSM
Wiki which is release under the same licence.

6.2. Authors and acknowledgments

This manual is created from material that originated from the mkgmap doc files and added to OSM wiki.
While on the OSM wiki modifications were made by many people.

People who have contributed suggestions and corrections to this document are: Carlos Davila, Geoff
Sherlock, Ticker Berkin

Thelist of nicknames of everyone that had modified the wiki pages at the time that this manual was
created is as follows. Brogo, Christian Gawron, Csdf, De muur, Derstefan, DirkS, Extremecarver,
Gernat, !i!, Jinx1971, Katpatuka, MarkS, Master, Mezzanine, Nakor, Nop, Richard, Skela,
SomeoneElse, Tommybgoode, Ulfl, Walterschloegl, WanMil, Willem1, Y ggdrasil

37

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

	Conversion Style manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Designing the map
	2.1. The Garmin Map
	2.1.1. Resolution
	2.1.2. Level
	2.1.3. Overview Level

	Chapter 3. The structure of a style
	3.1. Files
	3.1.1. Top level folder

	3.2. The version file
	3.3. The info file
	3.4. The options file
	3.4.1. Non command line options

	3.5. The points file
	3.6. The lines file
	3.7. The polygons file
	3.8. The relations file

	Chapter 4. Style rules
	4.1. Introduction
	4.1.1. Tag and text values

	4.2. Tag tests
	4.2.1. Allowed operations
	4.2.2. Combining tag tests
	4.2.3. Comparing the values of two tags
	4.2.4. Functions

	4.3. Action block
	4.3.1. add
	4.3.2. set
	4.3.3. delete
	4.3.4. deletealltags
	4.3.5. addlabel
	4.3.6. name
	4.3.7. addaccess
	4.3.8. setaccess
	4.3.9. apply
	4.3.10. apply_once
	4.3.11. apply_first
	4.3.12. echo
	4.3.13. echotags

	4.4. Variables
	4.4.1. Variable filters
	4.4.2. Symbol codes

	4.5. mkgmap internal tags
	4.5.1. Tags evaluated by mkgmap
	4.5.2. Tags added by mkgmap

	4.6. Element type definition
	4.6.1. level
	4.6.2. resolution
	4.6.3. default_name
	4.6.4. road_class
	4.6.5. road_speed
	4.6.6. continue
	4.6.7. continue with_actions

	4.7. Including files
	4.8. Finalize section
	4.9. Style syntax extension if then else
	4.10. Troubleshooting
	4.11. Some examples
	4.11.1. Simple examples
	4.11.2. More involved examples

	Chapter 5. Creating a style
	5.1. Testing a style
	5.1.1. Tests performed by check-styles

	5.2. Making a style package
	5.2.1. Zip archive
	5.2.2. Simple file archive
	5.2.3. The Garmin Map
	5.2.4. Resolution
	5.2.5. Level
	Watch out with levels when building topographical maps

	Chapter 6. About
	6.1. Licence
	6.2. Authors and acknowledgments

